
Fine-grain Memory Object Representation in
Symbolic Execution

Martin Nowack
Department of Computing

Imperial College London, UK
m.nowack@imperial.ac.uk

Abstract—Dynamic Symbolic Execution (DSE) has seen rising
popularity as it allows to check applications for behaviours such
as error patterns automatically. One of its biggest challenges is the
state space explosion problem: DSE tries to evaluate all possible
execution paths of an application. For every path, it needs to
represent the allocated memory and its accesses. Even though
different approaches have been proposed to mitigate the state
space explosion problem, DSE still needs to represent a multitude
of states in parallel to analyse them. If too many states are
present, they cannot fit into memory, and DSE needs to terminate
them prematurely or store them on disc intermediately. With
a more efficient representation of allocated memory, DSE can
handle more states simultaneously, improving its performance.
In this work, we introduce an enhanced, fine-grain and efficient
representation of memory that mimics the allocations of tested
applications. We tested GNU Coreutils using three different
search strategies with our implementation on top of the symbolic
execution engine KLEE. We achieve a significant reduction of
the memory consumption of states by up to 99.06% (mean DFS:
2%, BFS: 51%, Cov.: 49%), allowing to represent more states in
memory more efficiently. The total execution time is reduced by
up to 97.81% (mean DFS: 9%, BFS: 7%, Cov.:4%)—a speedup
of 49x in comparison to baseline KLEE.

Index Terms—symbolic execution; memory representation;

I. INTRODUCTION

Dynamic symbolic execution (DSE), a method for analysing
programs automatically, gained traction recently due to its
many applications. It can be used for generating extensive test
suites [1], finding bugs automatically [1], [2], [3], reverse-
engineering software [4], or automating security analyses [5].
Despite its many applications, the two fundamental challenges
remain: the state space explosion problem and high constraint
solving costs. The former is due to a possibly infinite number
of control flow paths through a tested application, which makes
it difficult to validate each path. The latter arises with the
constraints collected along each path. As a path becomes
longer, the complexity of constraints increases so does its
solving costs.

Even though different techniques have been proposed to
cope with the state space explosion problem, like state
merging [6] or directed exploration of the state space [7],
a symbolic execution engine still needs to represent many
states simultaneously in memory for efficiency. Each state
mimics the memory representation of an application including

1 char x [1 0 0] = {0 , . . . , 0 } ; / / z e r o i n i t i a l i s e d
2 char *y = c a l l o c (1 0 0 , 1) ; / / z e r o i n i t i a l i s e d
3 i n t i n p u t = s ym b o l i c ; / / s y mb o l i c i n p u t
4 i f (i n p u t >= 100 | | i n p u t < 1) {
5 x [0] = x [0] + 1 ;
6 } e l s e {
7 x [i n p u t] = x [i n p u t] + 5 ;
8 }

Listing 1: Example of single-byte modifications of larger
objects

allocated heap and stack memory at a specific moment of
execution.

The effective representation of the allocated memory of a
tested application has received little attention. With symbolic
input, the control flow can diverge if conditional branches
depend on symbolic input values. Symbolic execution handles
this by cloning the state (branching) to track control flows
independently with constraint subsets of the input.

For example, in listing 1, the control flow at line 4 depends
on the value of input from line 3. Therefore, the engine
needs to follow the control flows independently (either line 5
or line 7). Each outcome will modify the array (x[], line 1)
in a different way. If, for example, the condition (line 4)
is part of a loop, DSE will need to represent many slightly
different copies of the state to reason about them. Handling a
lot of states simultaneously can drastically increase the mem-
ory usage of a symbolic execution engine. If the maximum
capacity is reached, states have to be saved or terminated
prematurely [2], [4]. Copy-on-write techniques help to reduce
the memory consumption, i.e. the same unmodified object
(y, line 2) will be shared between states. If a state needs
to modify an object (x, line 1), it creates a copy of the
object and modifies the copy. However, with DSE, changes
can range from a single bit to a whole object. With many
states representing small changes in large objects, the overall
memory consumption can be high for a symbolic execution
engine that tracks changes with object granularity and unmod-
ified memory is duplicated. In contrast, a DSE engine could
track changes to memory in a very fine-grain way (e.g., byte-
level), which would lead to additional computational tracking
overhead. Especially, if a DSE engine needs to execute many
concrete—but memory intensive—instructions.

In this paper, we introduce a layered representation of

ASE 2019 ©2019 IEEE
Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

memory objects that can achieve a fine-grain but efficient
tracking of changes. Beside substantial memory savings, we
also show how it improves performance.

Our main contributions are:
1) A layered representation of memory which allows track-

ing changes efficiently (including properties like the
initialisation status of each byte);

2) Different optimisations enabled by the layered represen-
tation;

3) An open-source implementation on top of the state-of-
the-art symbolic execution engine KLEE [2];

4) A thorough evaluation of our contribution on GNU
Coreutils, using multiple search strategies;

First, we will introduce the different requirements that a
memory representation in the context of symbolic execution
needs to fulfil (§II). We continue with a detailed description
of our approach (§III) followed by a description of our im-
plementation based on the state-of-the-art symbolic execution
engine KLEE (§IV). We then evaluate our approach (§V) and
finish with an overview of existing approaches (§VI) and our
conclusion (§VII).

II. OVERVIEW

A. Background

We first recap how native applications handle memory
allocations before we detail how symbolic execution mimics
this behaviour of tested applications.

If we execute an application natively, it will allocate
memory of a certain size. This can be either on the stack
(Listing 1:1) or dynamically on the heap (e.g. malloc(),
calloc(), Lst. 1:2). An allocation reserves part of free
memory, which can be referred to by its address (addr). Using
the address, the application can both read from the allocated
memory and write to it arbitrarily. Multiple writes into the
same memory object will update it with the newest value (e.g.,
x[input] = x[input] + 5;) 1

Symbolic execution needs to reproduce the behaviour of an
application. For that, it tracks the memory that an application
has available and how it accesses it. However, with the many
control flows that an application can have, symbolic execution
needs to represent a large number of states simultaneously.
This makes it hard to track the whole virtual address space
(e.g. 4GiB for a 32bit) for all states. Instead, many state-of-the-
art symbolic execution engines [2], [4] only track the allocated
memory and its accesses.

Such an allocation can be represented as an array of data (A)
and its associated metadata like size (n), domain (D), range
(R) and also the base address of the allocation (the address of
the first byte of the allocated memory):

A := {v0, v1, ..., vn−1}

with size n and ∀i, vi ∈ R, i ∈ D and address base referencing
v0.

1We assume a memory model that follows sequential consistency: i.e., read
returns the value of a memory location that was written last to it.

0 1 2 3init:
0 0 0 0

I. write(2, 4):

0 0 4 0

II. read(2) → 4III. write(3, sym1):

0 0 4 sym1

IV. read(sym2) → 0 ∨ 4 ∨ sym1
V. write(sym3, 5):

0 0 4 sym1

VI. read(2) → 4 ∨ 5

Fig. 1: Example of memory accesses of a 4 byte object. Each
row reflects the memory object after a modifying operation on
it.

Symbolic execution mimics how an application writes to an
address (addr) or reads from it in two steps: first, searching for
the right memory object (A) that is associated with the address
(addressing); and second, accessing that object (accessing).

B. Addressing—Memory Object Lookup

For the lookup, symbolic execution engines search through a
list of memory objects associated with the current state to find
the single object that is associated with the address (addr). In
this paper, we focus on languages that allow pointer arithmetic
(like C or C++). Therefore, the address might point inside of
an object and not only reference it. Hence, the object lookup
will search for potential candidates by checking if the address
(addr) is within the object’s bounds with base as the first byte
of the object (addr ∈ [base, base+ width)).

Assuming that the address refers to a correctly allocated
object, to access the memory within that object, the correct
index is calculated by using the actual address and subtracting
the base address (index := addr− base).2 If the DSE cannot
resolve an address to an object, an out-of-bounds access has
been detected. In case the address is a symbolic expression,
DSE branches the state for each memory object the address
can be resolved to.

C. Accessing—Memory Object Access

If a native application updates a memory location, it over-
rides the old value with the new one. Symbolic execution needs
to model the same behaviour. However, in addition, it has to
cope with symbolic values. That is, the index or value that
is written or read can be symbolic.

We summarise the different access combinations in Tab. I
and will discuss them now in more detail. As an example
(Fig. 1), we assume the lookup of the memory object was
successful, and we got a reference to a 4-byte memory object
initialised with zeroes.

A concrete write with a concrete value will update this array
(e.g., write(2, 4);). Reading from this array with a con-
crete index will return the latest value written (e.g, read(2)
= 4;). If we write a symbolic value to a concrete index (e.g.,
write(3, sym1);), similarly, we fill the cell at index 3

2We assume that an allocation returns a non-zero-sized memory object if
successful.

with the value sym1. Things become more complicated (and
exciting) with symbolic indices. For example, if we read from
a symbolic index (e.g., read(sym2)), the returned value
depends on the actual value sym2 can be resolved to. In
our example, assuming sym2 is inbounds (0 ≤ sym2 < 4),
it can be v := 0 ∨ 4 ∨ sym1. Similarly, if we write to
a symbolic index, we do not know which exact location is
modified (e.g., write(sym3, 5);), this could potentially
override any location. This has an impact on all subsequent
operations on this objects. For example, a read with a concrete
index (read(2)) can return more complex expressions, e.g.,
read(2) = 4 ∨ 5;.

There are two main observations: First, write operations
modify the current state of an object; second, read operations
return a snapshot of the current state of the object.

D. The Impact of Branching

The implication for a symbolic execution engine is that it
is not enough to manage memory objects with a byte-wise
representation similar to the native execution of the tested
application (which would be much faster). However, instead,
it has to be able to memorise arbitrary changes with symbolic
indices or symbolic values. For example, if a native application
updates a four-byte array 100 times, the final size of the array
will be four bytes. For a symbolic execution engine, this can
be 4 bytes plus 100 times the representation of symbolic and
concrete updates.

After a detailed look into handling memory accesses within
a single state, we want to focus on how state branching
intensifies the problem. While executing a state, the symbolic
execution engine might reach an instruction which depends
on a symbolic value. In that case, the engine might be forced
to follow different subsets of the values domain. For that,
it will create copies of a state, to be able to follow them
independently, which is often referred to as state branching.

The cause of the branch is either due to symbolic data-
or control-flow dependencies. Data dependencies result from
a read or write operation that can resolve to multiple mem-
ory objects. In case of control-flow dependencies, it can be
either conditional control flow changes with the condition
depending on a symbolic expressions (e.g., Listing 1 line 4)
or the control flow target can be a symbolic expression
(e.g., dynamic function calls with a symbolic target: call
symbolic_value;).

Following different control flows, symbolic execution needs
to validate them first by checking the branch condition against

TABLE I: Possible combinations of read/write accesses of a
memory object with symbolic/concrete indices or values.

Method Index Value Example
Type Type

Read Concrete Conc./Sym. value = read(4);
Symbolic Conc./Sym. value = read(sym1);

Write Concrete Concrete write(3, 23);
Concrete Symbolic write(4, sym2);
Symbolic Concrete write(sym3, 5);
Symbolic Symbolic write(sym4, sym5);

5

0

4

1

3

2

6

3

concrete

update list
root

3 | 4

idx|val

2 | 1 sym | 2

Object State

Fig. 2: KLEE’s simplified representation of a memory object
and its object state with an update list.

the collected path constraints. It then follows the feasible path.
Solving those queries can be computationally expensive. If
multiple paths are possible, symbolic execution branches the
state, which will create a copy of the state representation and
add additional constraints that reflect one control flow.

Equivalent to native execution, during the lifetime of a state,
the state allocates many memory objects, and the number
of memory objects in a state can be significant. To reduce
performance penalties, memory objects are not copied with
each branch but referenced by each state copy. If one of the
states needs to update the values, the object state is copied
entirely (copy-on-write) and updates applied to the state-
specific copy. There is redundancy and wasted memory if the
changes to an object in comparison to the object’s size are
small. For applications that branch heavily, these costs can be
prohibitive.

E. Memory representation in the state-of-the-art symbolic
execution engines

To understand how state-of-the-art symbolic execution en-
gines handle memory, we analysed KLEE [2], an open-
source symbolic execution engine for C and C++.3 We will
summarise in this section how KLEE handles memory before
we introduce our approach (§III).

KLEE uses states that represent an execution path with
all its allocated memory objects and path constraints. An
allocation is handled as a byte-sized array by two entities:
a memory object and an object state. The memory objects
contain metadata like the address and the width of the allocated
memory. The object state contains the actual content of the
memory.

If a tested application accesses reads or writes from an
address, KLEE looks up the memory object and the associated
object state (object state, Fig. 2) with it. The simple case is
when the index is concrete and the memory object has not
been modified using a symbolic index before. In this case, a
write can modify the object state in-place. And in the case that
a memory object is shared between multiple states, a copy of
the object state is created and modified. For read operations,
the specific value of the object state is used. In the case an
object was modified with a symbolic index, KLEE memorises

3https://klee.github.io

https://klee.github.io

this update and all subsequent changes in a linked list (update
list) with the most recent updates as the root of the list (Fig. 2).

If the memory object is shared, new modifications are as
simple as adding a new item to the update list that is only
referenced by the modifying state. The downside is that no
update can be made in place. Instead, every modification is
added as a new entry to the list. If objects are often modified
with a concrete index and seldom with a symbolic (e.g., as it
happens in tight loops) a lot of memory is used.

For read operations, KLEE creates a read expression that
references the latest update item in the list.

In summary, the update list contains the temporal order of
the writes but does not allow optimisations of them. Besides,
it does not handle the spatial locality at all.

III. AN OPTIMISED MEMORY REPRESENTATION

In this section, we describe our layered memory object
representation and the optimisations that improve runtime
performance and reduce allocation space.

A. Memory Objects and their Updates—a Layered System

A sophisticated memory representation for a symbolic exe-
cution engine has the following requirements:

• Fast concrete memory accesses.
• Represents memory operations with symbolic indices or

values.
• Extends the memory model to support uninitialised mem-

ory.
• Simplifies the reuse of shared views on memory objects

and their changes while it preservs temporal and spatial
locality.

• Strongly separates constraint generation and constraint
solving to allow better utilisation of existing constraint
solving optimisations (like caching).

With these requirements and challenges, we propose a
layered representation of memory objects that can be shared
between many states. We detail the basic ideas in Figure 3. It
depicts one memory object o allocated by state 1 and how it
could evolve with each step (right side of this figure).

a) Layering: A layer is a description of an array that can
represent each byte of a memory allocation.

The first concept is to group updates of a single memory
allocation into layers. If a state needs to allocate memory,
a first layer (terminal layer) is created to represent that
memory object (I). The layer is referenced once. Therefore,
it is unshared. With every write operation (e.g., write(2,
23), II) to that memory object, the layer is updated. This
continues until the current memory object’s state needs to be
preserved. For example, if the object is read with a symbolic
index (III), the value is not resolved. Instead, the specific
object state is referenced and becomes part of a constraint. The
reference counter is increased to reflect this, and the object
state becomes shared. Similar, this is done for branching,
i.e. state 2 branches from state 1 (IV). As these states will
share the same representation of the memory object, the
reference counter will be increased. If one of those states

needs to modify the object (e.g. state 1 write(1,17)), the
representation for other instances (state 2 and read(sym1)
of state 1) cannot be changed. The updating state handles this
by adding a new layer (update layer) as part of the memory
object that still references the old layer (V).

Over time, a tree of layers will represent the object’s history
and relevant views held by any state. Every layer represents
changes of temporal locality, and every leaf layer presents
modifiable views on that object. If a layer is shared—the
reference counter is more than one—, the invariant is that no
semantic changes are allowed to it.

b) Layer Types: We extend the basic concept and provide
different kinds for each basic layer type (terminal and update)
to reflect the different access patterns for symbolic execution
and to implement additional features (e.g., detection of unini-
tialised memory accesses).

The terminal types can be either symbolic or concrete
only. This depends on whether a symbolic memory object
is allocated or a non-symbolic one. Initially, for a symbolic
layer, every byte is symbolic. For a concrete layer, every byte
is marked as uninitialised. Figure 3 shows the concrete only
terminal type.

To explain the different types of update layers, we assume
for a moment that a memory object is updated by consecutive
write operations without being read or being shared by multi-
ple states. The basic goal is to aggregate similar access types
together. Depending on the index type and value type, different
layers are used. We have: concrete only (V), concrete index
(VIII), and symbolic index (X). With a concrete index, the byte
to modify is explicitly specified. Based on the value type, if it
is concrete, it will be part of a concrete only layer. This layer
type allows the most compact memory representation possible
(a simple byte array is sufficient). If the value is symbolic, we
use a concrete index layer, and the value is directly associated
with the concrete index. If the write is to a symbolic index,
we use a symbolic index layer that is similar to the update
list of the KLEE implementation. Similar access types allow
reasoning about the structure in a similar way.

What if different types of writes to the same object are
interleaved? For every write with a type different than the
previous one, a new appropriate layer is added.

To summarise, layering has three objectives: First, to allow
to share and reuse a specific view on a memory object inside
a single state or between different states, which allows saving
memory; second, to preserve the temporal order of write
operations and preserve temporal locality—more recent writes
will be in newer layers than older writes; and, third, allow
spatial locality without violating temporal order. The last two
objectives allow further optimisations.

B. Optimisations using a Layered Memory Updates

With this layer system in place, we can apply different
optimisations for read() and write() operations:

• index-based access
• in-place update
• conditional update

• layer invalidation
• optimised hashing

Again, we will use Figure 3 to explain the different cases.
a) Index-based Access: Every layer (except the symbolic

layer) allows index-based access. Using concrete indices, we
directly access the correct position of the most recent layer
for read or write operations. When reading a specific index
and the leaf layer does not contain a value at the index, we
traverse the stack of layers until a value at this index is found.
For example for read(2) (VI), the most recent version of the
object state is in (V) for state 1. At index 2, there is no value
in this layer. But the next, older layer (II) contains a value
(23) at this position, which is returned by the read operation.
If none is found, e.g. reading at index 0 instead, it is a read
of uninitialised memory. For writing, the most recent layer
can be modified at the indexed position (if not shared), or a
new layer will be added containing the intended write. If there
is a symbolic index layer, the read will return a reference to
this layer combined with the concrete index (similar to III).
Symbolic index layers are more restrictive and do not allow
direct index-based access. Still, if a set of consecutive bytes
should be accessed, we know that each byte does not alias
with any other from the same set. This is handled similarly
for writing operations. A potential optimisation is to calculate
the bounds of the index and memorise them as part of the layer.
This makes the layer accessible for subsequent concrete index
reads as they might access values outside of these bounds. For
example, if a write operation with a symbolic index potentially
modifies index 0 and 1 (sym3 in X for state 2), a read at index
2 can still return value sym2 from the previous write (VIII).

b) In-place Update: If, for a write operation, the most re-
cent layer is not shared and a value was recently written to that
index, the value can be updated in place. This keeps the most
recent and relevant value without preserving any older non-
relevant update. For example at stage II, a write(2,24)
would result in updating the layer directly.

c) Conditional Update: Building on top of the index-
based access, if we have a write operation with a concrete
index (e.g. write(2,23)), we can check if the most recent
value referenced by this index (II) is the same as the one we
want to write (VII). If so, nothing needs to be written. This
is especially useful if the layer containing the value is already
shared, no new layer needs to be added. New layers will only
contain semantical changes to an object.

d) Layer Invalidation: As we track the indices which
have been modified by every layer, we can detect when
the most recent layers describe the whole object (e.g.
write(0,5), IX). In that case, the referenced object state
can be replaced by a single layer containing all the updates.
The new layer will be unshared and for the previous layer, the
reference counter will be decremented. This can potentially
lead to freeing other layers and allowing further optimisations
for remaining users.

e) Optimised Hashing: We maintain a hash sum of each
object state that allows us to compare object states fast,
independent of their internal tree representation. With the help

State 1

o 1

write(2,23) 23o 1

read(sym1)
2

write(1,17) o 171

3

read(2)

write(2,23) o 1

write(0,5) 5 17 23o 1

State 2

o3

write(2,sym2) sym2o 1

3

write(sym3,8) sym3 | 8o 1

1

init

I
update

II
read

III
branch

IV
update

V
read

VI
update

VII
update

VIII
invalidation

IX
symbolic index

X

Reference 3

Object o
terminal layer update layer

Steps

Fig. 3: Examples of different optimisations for layered ob-
jects. From top to bottom, each horizontal line separates an
evolutionary step of the memory object.

of the layered structure and the index-based access, we can
optimise the hashing. Every layer contains a hash sum that
summarises the layer’s updates and the one from previous
layers. We update the hash with every update to the object
state, we use the already stored value at the same index, undo
its modifications on the hash sum and apply the modification
using the new value. This way, we always have an up-to-date
hash sum for an object state. The remarkable result of this is,
that if we want to compare two objects and check if they are
equivalent, they have to have the same hash sum even though
they can be comprised of hugely varying structures that are the
result of different executions. To handle hash collisions, if hash
sums are equivalent, a byte-by-byte comparison can check
their equivalence. As the hashing is composable, it allows
other use cases. For example, to compare the divergence of
two states of the same ancestor, only a subset of layers needs
to be compared.

To summarise, the layered approach combined with the
optimisations allows an efficient sharing of memory object
changesets between states. The stack of layers preserves the
temporal order. It fosters temporal and spatial locality, i.e. sim-
ilar changes will be in close proximity in space and time and
will typically use the same layer. Inside a layer, the temporal
order is not important - except for the symbolic index layer
type. For example, the order of write(0,5); write(1,
17); write(2,23); does not matter if subsets are not
shared. This hashing allows for improving the equivalence
check of objects vastly.

C. Object anonymity: Equivalence vs. Identity of Memory
Objects

Another building block of our approach is to avoid that
the information about memory objects of a state are tied to
expressions used by the solver.

If different states allocate same-sized objects and generate
equivalent constraints, we want to make sure that the solver
gets an equivalent query. This allows us to cache solutions
from a previous query and to reuse them.

To be able to do that, we use a technique based on De Bruijn
Index [8] to allow to check for α-equivalence by checking for
term equivalence. For that, we anonymise memory objects but
also create and traverse expressions deterministically. While
traversing a set of expressions as part of a solver query, we
build up a list of anonymous memory objects (i.e. no address)
by just remembering the order of their first occurrence and
remembering their size. If an object is reencountered, we use
the reference to its first occurrence. If we want to compare
constraints from different states, we traverse the expression
trees of the constraints in parallel and collect the anonymous
objects and their order of occurrence on both sites. If the
traversal showed a structural equivalence of the expressions,
we know they are accessing equivalent expressions. Finally,
we check the order of occurrences. If they are the same, we
know expressions are semantically equivalent.

Therefore, if an assignment is valid for one set of con-
straints, it is also valid for another equivalent constraint set. If
caches are structured such that they support anonymous objects
in cached expressions, this can be used to make caching more
efficient.

Independent of that, if an address of an object becomes
part of an expression, two states will only generate the same
expression, if the objects of each state refer to the same
address.

IV. IMPLEMENTATION

We implemented our prototype on top of KLEE 1.4.0 [1],
[9] replacing the old memory representation with our new one.
The goal was to be feature compatible with KLEE and not to
restrict its applicability.

A. Optimising the Layered Presentation of Memory Objects

We represent the memory objects with different layer
classes. One key to our implementation is that every layer of
a memory object is reference-counted using a smart pointer.
Besides the automatic memory management, it provides us
with the advantage to check if the layer is shared or not. This
allows us to conditionally apply our optimisations §III-B.

Every layer type, except the symbolic layer and the sym-
bolic index layer, contains a bitmap indicating which byte of
this layer was already written. For the terminal all-concrete
layer, we use an array with the exact size of the memory
object as we noticed that many applications allocate memory
and initialise it immediately before they use it further. This
typically involves no symbolic expressions. For all update
layers, we use a dense vector representation, which allows to
only store the layer’s updates. In combination with a bitmap
array tracking at which index was written, we achieve a fast
lookup.

The bitmap array allows us to implement two more features:
tracking of uninitialised memory and layer merging. First, if

we want to access a byte of an object, traverse every layer,
check their modification bitmap but do not find this bit set, we
can safely assume that the byte of the array is uninitialised.
This allows us to efficiently find this type of failures—a threat
for languages like C and C++. KLEE does not handle this type
of failures as it initialises the value implicitly to a concrete
random value. Second, the modified bitmap of consecutive
layers can be merged efficiently; we check if all bits are set in
the resulting bitmap. In this case, we do not need older layers,
as their information has been overridden by the newer ones.

Possible Optimisations: We tried to keep our implemen-
tation as simple as possible. Still, we think there are many
different optimisations to improve our general approach. For
example, small- and big-size memory object optimisation:
currently, we always allocate a full array plus appropriate
bitmap for any allocation size. One could have a simplified
version for small allocations (1-64 Byte, which happens quite
often) to avoid the management overhead; or, a sparse version
for large allocations (e.g. > 1KiB - as they are often used
for application local memory management like buffers and are
not fully initialised).

B. Calling External Functions

One major challenge was the original design decisions
made for KLEE[2]. For performance reasons, the execution
states which resemble the tested application states are not
fully decoupled from the address space of KLEE itself. The
execution state’s address space is not virtualised. Therefore, if
a tested application executes an allocation, the returned address
becomes part of that state but can also be directly accessed
by KLEE itself. Still, for every memory access specific to this
allocation, a memory object and a memory state will handle
the operation. A state will never directly access the allocated
space.

This approach has its advantages in case an external function
is called: The addresses of allocated memory might be part of a
function argument, e.g. for result buffers (ext_funct(char
* buf)). Before calling an external function, KLEE copies
every memory object and their content of a state to their real
allocated memory buffers; it calls the external function; and,
it updates the object states to reflect changes of real buffers
by the invoked external function.

We had to extend this functionality as our memory state
representation is layered. Therefore, before copying, we make
a flattened copy of the original object state that we copy to the
allocated memory; invoke the external functions, and compare
the flat copy with the allocated memory. In case of changes,
we copy them to the appropriate layer and continue execution.

C. Handling Anonymous Objects

To implemented the support for handling anonymous object
III-C, we modified the traversing of expressions used by
KLEE. In addition, we updated the caching infrastructure to
handle anonymised objects.

V. EVALUATION

We compare our implementation (Fine-Grain Memory) with
the state-of-the art symbolic execution engine KLEE (Base-
line) to answer the following research questions: RQ1: What
is the performance impact of the fine-grain memory approach?
RQ2: What is the impact on memory consumption?

A. General Experimental Setup

We used GNU Coreutils,4 a suite of system applications
that are part of most UNIX and Linux environments. Their
variety exercises different aspects of a symbolic execution
engine and they provide different patterns of impact (e.g.,
time spent in solving or time spent in generating constraints).
We analyse each application of the GNU Coreutils with
the original KLEE version (Baseline) and our new memory
implementation (Fine-Grain Memory). For every application,
we run the two different implementations for the same number
of instructions that can be executed in roughly 30min. We use
STP [10] 2.2.1 as our solver.

Every test runs as a single Docker instance without any
parallel running application on one out of 50 equivalent host
machines (Intel XEON E5405 with 2.00GHz and 8GB RAM).5

Every experiment starts with the same clean state. We executed
each experiment 3 times and took the mean to account for the
impact of differences between execution time due to system
variability.6

B. Deterministic Exploration

We aim for reproducible research. Still, we think that this is
hard in the context of symbolic execution due to the state space
explosion problem and the resulting non-determinism. With a
reasonable time limit, only a subset of all possible paths can be
solved. Out of the many execution paths that an application can
have, every path is different: the instructions per path differ,
and the associated costs of solving queries along a path vary.
Therefore, if we compare two implementations, and each im-
plementation is exploring different paths, it is hard to attribute
differences to either the implementation or the path taken. For
example, Fig. 4 shows a subset of applications we have tested
and compares how many instructions three different search
strategies can execute. Within a single application, the variety
can be significant (e.g. for id), but also between different
applications, the number of instructions varies significantly.

Ideally, we would like to fully explore an application.
Unfortunately, this is often not possible, so we limit each
experiment to 30 min. We employ a controlled, deterministic
exploration of tested applications. In a nutshell, for each
application and each searcher, we log every instruction that
has been executed and by which state it has been executed.
Furthermore, we limit each application to execute an exact
number of instructions that can be finished in roughly 30
minutes.

4Version 6.11 https://www.gnu.org/software/coreutils/coreutils.html
5https://www.docker.com/
6The total execution time of the final results are worth 33 days of execution

time on a single node

Fig. 4: Number of instructions executed for 30 min per applica-
tion using different exploration strategies (depth-first, breadth-
first and random plus coverage-driven) (30 min runtime).

We compare the logged instructions for our two implemen-
tations to check if they are identical. Applications can exhibit
nondeterministic external behaviour (e.g., check date/time or
free disk memory) on some execution paths. Therefore, we
cannot compare all applications (89) of the GNU Core Utilities
with all searchers like that. We restrict ourselves to the
deterministic runs with an execution time of at least three
minutes of the baseline run. Tab. II summarises how many
applications per searcher could be executed deterministically.

This deterministic approach has two important advantages:
First, we can attribute differences of measured aspects to
the implementation and the approaches and, with that, we
can rule out the possible impact of differently explored state
space. Second, we can check if a new implementation behaves
correctly with respect to the original one.

C. Experiment Variety

To show the effectiveness of our implementation, we use
three different space exploration strategies as they show fun-
damentally different behaviour of a symbolic execution engine.
The different exploration strategies are the following.

• Depth-First-Search (DFS): Progress one state as much
as possible until the tested application terminates or an
error is detected. There is little state branching but the
path constraints tend to be larger.

• Breadth-First-Search (BFS): Prioritise the exploration
of the width of the state space before exploring its depth.
This leads to more state branching but smaller constraint
sets per path.

• Random + Coverage oriented: Combination of two
exploration strategies: a random selection of paths and a
code-coverage-driven exploration of the state space. The
behaviour varies between DFS and BFS.

With the potentially large variety of executed instructions
between searchers for a single application (Fig. 4), we can see
that different paths have different costs. Table II shows relevant
properties of the test suite when executed with different
searchers. Every searcher has applications where it executes
most instructions (Application with Max. Instructions). Still,

https://www.gnu.org/software/coreutils/coreutils.html
https://www.docker.com/

TABLE II: Different search strategies and properties of the application

Searcher Deterministic Applications Max. Num. Instructions Max. States Apps with Max. Instructions
DFS 43 1.8 ∗ 109 887 16
BFS 37 1.7 ∗ 109 587893 11
Random + Coverage 40 0.6 ∗ 109 500657 2

DFS can execute most of the applications with the high-
est number of instructions. Random + Coverage executes
the least. One reason is that tracking the coverage-based
information to decide which state to progress next is much
more expensive than the other two searchers. Therefore, fewer
instructions are executed as more time is spent in the state
selection.

Another interesting property is the maximum number of
states that co-exist during execution (Max. States), for DFS
the number of states is three orders of magnitudes smaller
than for BFS and Random + Coverage. Hence, the memory
pressure is much higher for the two latter searchers. Also,
every algorithm that needs to iterate over the whole set of
states takes longer.

D. Impact on Execution Performance

Fig. 5 shows the impact on execution time. For every
searcher, we show how much time each application took to
execute it deterministically. We divided each searcher result
into two groups separated by a red bar. Applications of the
Baseline where the executor spends more time in executing
instructions are on the left side of the red bar; applications
with more time spent in constraint solving are on the right side.
Both categories stress different parts of a symbolic execution
engine: instruction-intense applications increase the likelihood
for memory accesses and branching of states and will exercise
more memory-related operations; constraint solving often in-
volves whole-object access for reasoning as part of the solver
access. We can see for our experiments that the majority is
constraint generation dominated. While DFS has the most
constraint-solving dominated applications, BFS has the least.

The upper graphs show the absolute wall-time for each
experiment, the lower graph shows the relative changes with
respect to the baseline. For example, for depth-first search
(Fig. 5a) Fine-Grain Memory has an 18% overhead for yes
but reduces the execution time by 95% for factor. For
constraint-generation dominated applications, the results are
promising. We see runtime changes between by −2% to
+18.7% for DFS (Fig. 5a) with similar results for BFS
(Fig. 5b) . Random + Coverage (Fig. 5c) shows the most
overhead between 40% and 50% (pinky, readlink, id).
A major reason is that our prototype is not explicitly optimised
to handle small array allocations for simplicity reasons. But it
could be added in future work. Solver-intensive applications
already benefit much more from our approach. Their runtime
changes between −95% and +9%.

To understand better where those differences come from,
we have a closer look at how much time every application
spents in constraint generation (Fig. 6). The layered structure
can add more time to the constraint generation. We measured

(a) Depth First Search

(b) Breadth First Search

(c) Random + Coverage Search

Fig. 5: Execution time (s) of the Fine-Grain Memory im-
plementation vs. Baseline implementation. Red bars separate
experiments where Baseline spends more time generating
instructions (left) from applications that spend more time in
constraint solving (right).

up to 21% for the constrain generation dominated applications.
With the vast amount of instructions executed, this overhead
accumulates. Still, we already observe reductions as well (e.g.
for pathchk, echo DFS) that can utilise the index-based
access.

(a) Depth First Search

(b) Breadth First Search

(c) Random + Coverage Search

Fig. 6: Time spent in constraint generation in (s) of the Fine-
Grain Memory implementation vs. Baseline implementation:
upper bar chart shows absolute values (lower is better); lower
bar shows relative changes (%)

On the other hand, we save much more time by the reduced
solver time. Looking at the graphs (Fig. 7), one can see that
constraint-generation-dominated applications spend little time
in solving. Still, the differences saved by our approach are
significant.

One building block of our memory implementation is the
memory object anonymity (§III-C). If queries are detected as
equivalent if they share the same structure, the more efficient
a cache is for such solutions. For that, we look at the number
of queries that are finally issued to a solver (Fig. 8), we see
a noticeable reduction of query numbers (DFS, BFS: up to
95%). Therefore, we can conclude that the object anonymity

(a) Depth First Search

(b) Breadth First Search

(c) Random + Coverage Search

Fig. 7: Time spent in solving queries for different state space
exploration strategies.

implementation is effective. Still, the reduction does not fully
explain all the solving time saved (III-A). The layered repre-
sentation of memory objects allows the simplification of solver
queries, which shows in the additionally saved solver time.

E. Impact on Memory Consumption

We can observe a positive impact on execution and solver
time. Still, we want to measure the maximum allocated
memory during the execution to quantify its impact. As a
reminder, due to the deterministic path exploration, the number
of concurrently active states was equivalent at all time for
both implementations. The maximum memory we allowed for
the states was 3072 MiB. We added a state size estimation
which allows us to keep the same number of states for both
implementations. Furthermore, we made sure that in case we

(a) Depth First Search

(b) Breadth First Search

(c) Random + Coverage Search

Fig. 8: Number of solver queries. This number excludes all
the queries that are already solved by caching.

hit the limit with our estimated size, we kill the same states.
The estimation for the state size was not always perfect but
helped us to avoid reaching real memory limits and allowed
the deterministic execution. We tracked the allocated memory
as provided by the system allocator. Besides the memory for
memory objects of each state, it also contains other memory
allocations made by KLEE (Baseline) and our implementation
(Fine-Grain Memory).

As one can see in Fig. 9b, the overall memory allocated
highly depends on the search strategy. While on average, the
consumed memory for Baseline is below 200 MiB for DFS
(Fig. 9a), the memory consumed by BFS can be up to 20x
higher. As one can see in Tab. II the size correlates with the
number of states. In comparison, Fine-Grain Memory can add

(a) Depth First Search

(b) Breadth First Search

(c) Random + Coverage Search

Fig. 9: Memory usage (MB) by applications for different DFS
and BFS.

a little overhead if only a few states need to be represented
(+20%, < 50MiB). In contrast, if a vast amount of states
need to be present (like for BFS), the space reduction achieved
by Fine-Grain Memory is substantial (up to 82%, > 3GiB)
as more layers of memory objects can be shared between
different states. To emphasise again, we limited the memory
for both implementations to 3GiB to achieve a deterministic
comparison. Even isf more memory is made available to both
implementations, still, Fine-Grain Memory could represent
more additional states with the extra memory than KLEE.

F. Handling Uninitialised Memory

Our new memory implementation supports the detection
of the usage of uninitialised memory and terminates a state
as soon as an operation depends on a previously read but

uninitialised memory. We disabled that feature for the previous
part of this section. We also ran the new implementation with
uninitialised memory detection to validate that it works.

We found bugs in the runtime support library of KLEE itself
and multiple in the CoreUtils suite.

G. Validity

Replacing an essential part of a symbolic execution engine
like the memory representation can be an error-prone and
challenging task. We added an extensive test suite to KLEE
that allows us to check the memory behaviour. Furthermore,
for the evaluation, we made sure that our experiments behave
deterministically to foster reproducibility. For every setup and
every application, we fully tracked the executed instructions
for both implementations, the original KLEE and ours. We
checked that both executed precisely the same instructions by
the same states in the same order. We plan to publish our
source code and experiment results to allow the community to
reproduce our findings.

VI. RELATED WORK

a) Representation of allocated memory objects: Various
symbolic execution engines use different techniques to rep-
resent allocated memory. For Java, JFP-SE[11], only concrete
memory objects are allocated. Symbolised values are managed
via metadata (e.g. for each attribute of a class) associated with
memory objects. This way, objects with partial changes are
harder to represent efficiently than with our layered approach.
For Mayhem [4], which analyses binaries, a notion of ob-
jects does not exist. Memory accesses can be arbitrary and
associating them with a specific object is not always possible.
Therefore Cha et al. apply two main optimisations: writes are
always concrete and reads with symbolic index are handled
as snapshots M of a memory region to which the symbolic
index could be resolved. Similarly, our layered approach is not
limited to objects, but could also be used for arbitrarily size
memory regions.

b) Memory-efficient state representation: For EXE [1],
the tested application and its address space is reflected by the
process. In case states need to be branched, the process forks
via POSIX call fork() and memory pages are shared be-
tween processes. The downside is that even for small changes,
the copy-on-write of the operating system creates page-sized
copies. KLEE [2] handled this issue by tracking memory based
on allocated memory objects. This largely reduced the memory
footprint.

Mayhem [4] employs state-suspension if needed. In case of
too much memory usage, a subset of the states is saved on disk
while it continues with the remaining ones. If no more states
are left, previously-stored states are restored, and Mayhem
continues to analyse them. This is an orthogonal approach
to Fine-Grain Memory as we try to avoid spilling states on
disk in the first place, to avoid performance penalties. Still,
if memory pressure becomes too high due to the state-space
explosion, state-suspension is a useful approach.

c) State Space Explosion: For handling the massive
amount of states, different techniques have been proposed:

• State Merging: Using call-graph and control-flow infor-
mation to merge similar states together [6] or the data-
driven approach like in [12].

• Composition: Using summaries of modules (e.g. func-
tions) to replace the invocation of those functions with
symbolic summaries [13], [14], [15], [16]

• State space pruning: Removing irrelevant states as they
are subsumed by existing ones [17]

• Targeted exploration: The state space is explored accord-
ing to specific requirements, e.g. to cover yet uncovered
instructions like proposed by Cadar et al. [1], [18], [7]

All those approaches are orthogonal to ours. Still, for any of
those approaches, many states need to be explored in parallel
eventually. Our memory efficient representation supports this.

VII. CONCLUSION AND FUTURE WORK

Efficient representation of allocated memory is vital for
symbolic execution. We have introduced Fine-Grain Memory,
a method that represents memory in a layered structure to
foster temporal and spatial locality and to preserve the tempo-
ral order of memory object modifications. Moreover, it allows
additional optimisations that reduce the number the solver is
invoked and therefore reduce the overall time spent in solving.
Preliminary results show the usefulness of our approach by
extensively reducing the memory footprint of a symbolic
execution engine and improving its runtime performance. Our
approach allows us to handle much more states simultaneously
and avoids terminating them or storing and restoring them in
the first place.

We plan to make our implementation open source and
contribute relevant changes to KLEE.

ACKNOWLEDGMENT

We want to thank Cristian Cadar, Frank Busse, Timotej
Kapus, Vesna Nowack and the anonymous reviewers for their
valuable comments on our paper and their support. The UK
EPSRC has generously supported this research via grant
EP/N007166/1, EP/R011605/1 and funding by TU Dresden,
Germany.

REFERENCES

[1] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” ACM Transactions
on Information and System Security, vol. 12, no. 2, pp. 1–38, Dec
2008. [Online]. Available: http://dx.doi.org/10.1145/1455518.1455522

[2] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems
Programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI 2008. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[3] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: symbolic
execution of Java bytecode,” Proceedings of the IEEE/ACM international
conference on Automated software engineering - ASE ’10, 2010.
[Online]. Available: http://dx.doi.org/10.1145/1858996.1859035

[4] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 380–394.

http://dx.doi.org/10.1145/1455518.1455522
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1145/1858996.1859035

[5] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic exploit generation,” Communications of the
ACM, vol. 57, no. 2, Feb. 2014.

[6] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient
State Merging in Symbolic Execution,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: ACM, 2012,
pp. 193–204. [Online]. Available: http://doi.acm.org/10.1145/2254064.
2254088

[7] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed Symbolic
Execution,” in Static Analysis, E. Yahav, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 95–111.

[8] N. G. de Bruijn, “Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem,” Studies in Logic and the Foundations of
Mathematics, vol. 133, pp. 375–388, Jan. 1994.

[9] KLEE developers. (2017, 07) KLEE 1.4.0. [Online]. Available:
https://github.com/klee/klee/releases

[10] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors and
Arrays,” in Computer Aided Verification. Berlin, Heidelberg: Springer,
Berlin, Heidelberg, Jul. 2007, pp. 519–531.

[11] S. Anand, C. S. Pasareanu, and W. Visser, “JPF-SE: A Symbolic
Execution Extension to Java PathFinder.” TACAS, pp. 134–138, 2007.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-71209-1_12

[12] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise: multi-path symbolic
execution using value summaries,” Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015,
2015. [Online]. Available: http://dx.doi.org/10.1145/2786805.2786830

[13] P. Godefroid, “Compositional dynamic test generation,” in Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’07. New York, NY, USA:
ACM, 2007, pp. 47–54. [Online]. Available: http://doi.acm.org/10.1145/
1190216.1190226

[14] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven composi-
tional symbolic execution,” in Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 367–381.

[15] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali,
“Compositional may-must program analysis: Unleashing the power of
alternation,” in Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’10.
New York, NY, USA: ACM, 2010, pp. 43–56. [Online]. Available:
http://doi.acm.org/10.1145/1706299.1706307

[16] R. Qiu, G. Yang, C. S. Pasareanu, and S. Khurshid, “Compositional
Symbolic Execution with Memoized Replay,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE). IEEE,
2015, pp. 632–642.

[17] P. Boonstoppel, C. Cadar, and D. R. Engler, “RWset: Attacking Path
Explosion in Constraint-Based Test Generation,” in Tools and Algorithms
for the Construction and Analysis of Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, Mar. 2008, pp. 351–366.

[18] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided
path exploration in dynamic symbolic execution,” in 2009 IEEE/IFIP
International Conference on Dependable Systems Networks, June 2009,
pp. 359–368.

http://doi.acm.org/10.1145/2254064.2254088
http://doi.acm.org/10.1145/2254064.2254088
https://github.com/klee/klee/releases
http://dx.doi.org/10.1007/978-3-540-71209-1_12
http://dx.doi.org/10.1145/2786805.2786830
http://doi.acm.org/10.1145/1190216.1190226
http://doi.acm.org/10.1145/1190216.1190226
http://doi.acm.org/10.1145/1706299.1706307

	Introduction
	Overview
	Background
	Addressing—Memory Object Lookup
	Accessing—Memory Object Access
	The Impact of Branching
	Memory representation in the state-of-the-art symbolic execution engines

	An optimised memory representation
	Memory Objects and their Updates—a Layered System
	Optimisations using a Layered Memory Updates
	Object anonymity: Equivalence vs. Identity of Memory Objects

	Implementation
	Optimising the Layered Presentation of Memory Objects
	Calling External Functions
	Handling Anonymous Objects

	Evaluation
	General Experimental Setup
	Deterministic Exploration
	Experiment Variety
	Impact on Execution Performance
	Impact on Memory Consumption
	Handling Uninitialised Memory
	Validity

	Related Work
	Conclusion and Future Work
	References

